

CS6502-OBJECT ORIENTED ANALYSIS AND DESIGN

Two Marks Question with Answers

Unit-I

Introduction to OOAD

1. What is Object-Oriented Analysis? Nov/Dec 2016

During object-oriented analysis there is an emphasis on finding and describing the objects or
concepts in the problem domain. For example, in the case of the flight information system,
some of the concepts include Plane, Flight, and Pilot.

2. What is Object-Oriented Design?

During object-oriented design (or simply, object design) there is an emphasis on defining
software objects and how they collaborate to fulfill the requirements. The combination of
these two concepts shortly known as object oriented analysis and design.

3. What is Object-Oriented Analysis and Design? APRIL/MAY-2011

During object-oriented analysis there is an emphasis on finding and describing the objects or
concepts in the problem domain. For example, in the case of the flight information system,
some of the concepts include Plane, Flight, and Pilot.

During object-oriented design (or simply, object design) there is an emphasis on defining
software objects and how they collaborate to fulfill the requirements. The combination of
these two concepts shortly known as object oriented analysis and design.

4. What is Analysis and Design?

Analysis emphasizes an investigation of the problem and requirements, rather than a solution.
Design emphasizes a conceptual solution (in software and hardware) that fulfills the
requirements, rather than its implementation. For example, a description of a database
schema and software objects.

5. Define Design Class Diagrams April/May 2016

A static view of the class definitions is usefully shown with a design class diagram. This
illustrates the attributes and methods of the classes.

6. What is the UML? MAY/JUNE 2012

The Unified Modeling Language is a visual language for specifying, constructing and
documenting the artifacts of systems.

7. What are the three ways and perspectives to Apply UML?

Ways - UML as sketch, UML as blueprint, UML as programming language

Perspectives-Conceptual perspective, Specification (software) perspective, Implementation

(Software) perspective.

8. What is Inception? APIRAL/MAY-2011

Inception is the initial short step to establish a common vision and basic scope for the
Project. It will include analysis of perhaps 10% of the use cases, analysis of the critical
non-Functional requirement, creation of a business case, and preparation of the
development Environment so that programming can start in the elaboration phase.
Inception in one Sentence: Envision the product scope, vision, and business case.

9. What Artifacts May Start in Inception?

Some sample artifacts are Vision and Business Case, Use-Case Model, Supplementary
Specification, Glossary, Risk List & Risk Management Plan, Prototypes and proof-of-
concepts etc.

10. Define Requirements and mention its types.

Requirements are capabilities and conditions to which the system and more broadly, the
project must conform.

1. Functional

2. Reliability

3. Performance

4. Supportability

11. What are Actors?

An actor is something with behavior, such as a person (identified by role), computer system, or
organization; for example, a cashier.

12. What is a scenario?

A scenario is a specific sequence of actions and interactions between actors and the system; it is

also called a use case instance. It is one particular story of using a system, or one path through
the use case; for example, the scenario of successfully purchasing items with cash, or the
scenario of failing to purchase items because of a credit payment denial.

13. Define Use case.

A use case is a collection of related success and failure scenarios that describe an actor using a
system to support a goal. Use cases are text documents, not diagrams, and use-case modeling is
primarily an act of writing text, not drawing diagrams.

14. What are Three Kinds of Actors?

Primary actor, Supporting actor, offstage actor.

15. What Tests Can Help Find Useful Use Cases?

1. The Boss Test

2. The EBP Test

3. The Size Test
16. What are UseCase Diagrams?

A use case diagram is an excellent picture of the system context; it makes a good context
diagram that is, showing the boundary of a system, what lies outside of it, and how it gets used.
It serves as a communication tool that summarizes the behavior of a system and its actors.

17. What are Activity Diagrams?

A diagram which is useful to visualize workflows and business processes. These can be a useful
alternative or adjunct to writing the use case text, especially for business use cases that describe
complex workflows involving many parties and concurrent actions.

18. List the relationships used in use cases? MAY/JUNE 2012

1.Include

2.Extend

3.Generalize

19.List out the steps for finding use cases.NOV/DEC 2012

Identifify the actor
Name the use cases
Describe the usecse by using terminologies.

20. What is an object?

An object is a combination of data and logic; the representation of some real-world entity.

21. What is the main advantage of object-oriented development?

• High level of abstraction

• Seamless transition among different phases of software development

• Encouragement of good programming techniques.

• Promotion of reusability.

22. What is Object Oriented System development methodology?

Object oriented system development methodology is a way to develop software by building
self-contained modules or objects that can be easily replaced, modified and reused.

23. Distinguish between method and message in object.

Method Message

i) Methods are similar to functions, procedures or subroutines in more traditional
programming languages. Message essentially are non-specific function calls.

ii) Method is the implementation. Message is the instruction.

iii) In an object oriented system, a method is invoked by sending an object a message. An object
understands a message when it can match the message to a method that has the same name as
the message.

UNIT-II

Elaboration

PART- A

1. What is Elaboration?

Elaboration is the initial series of iterations during which the team does serious investigation,
implements (programs and tests) the core architecture, clarifies most requirements, and tackles the
high-risk issues. In the UP, "risk" includes business value. Therefore, early work may include
implementing scenarios that are deemed important, but are not especially technically risky.

2. What are the tasks performed in elaboration?

 the core, risky software architecture is programmed and tested 

 the majority of requirements are discovered and stabilized 

 the major risks are mitigated or retired 



3. What are the key ideas and best practices that will manifest in elaboration?

 do short time boxed risk-driven iterations 
 start programming early 

 adaptively design, implement, and test the core and risky parts of the architecture 

 test early, often, realistically 
 adapt based on feedback from tests, users, developers 


• write most of the use cases and other requirements in detail, through a series

of workshops, once per elaboration iteration

4. What Artifacts May Start in Elaboration?

Domain Model This is a visualization of the domain concepts; it is similar to a static

 information model of the domain entities.

Design Model This is the set of diagrams that describes the logical design. This includes

 software class diagrams, object interaction diagrams, package diagrams,

 and so forth.

Software A learning aid that summarizes the key architectural issues and their

Architecture resolution in the design. It is a summary of the outstanding design ideas

Document and their motivation in the system.

Data Model This includes the database schemas, and the mapping strategies between

 object and non-object representations.

Use-Case Descriptions of the user interface, paths of navigation, usability models,

Storyboards, UI and so forth.

Prototypes

5. What are the key ideas for Planning the Next Iteration?

Organize requirements and iterations by risk, coverage, and criticality.

6. What is a Domain Model? APIRAL/MAY-2011

A domain model is a visual representation of conceptual classes or real-situation objects in a
domain. The term "Domain Model" means a representation of real-situation conceptual
classes, not of software objects. The term does not mean a set of diagrams describing
software classes, the domain layer of a software architecture, or software objects with
responsibilities.

7. How the domain model is illustrated?

Applying UML notation, a domain model is illustrated with a set of class diagrams in which
no operations (method signatures) are defined. It provides a conceptual perspective. It may
show:

 domain objects or conceptual classes 

 associations between conceptual classes 

 attributes of conceptual classes 



8. Why Call a Domain Model a "Visual Dictionary"?

The information it illustrates could alternatively have been expressed in plain text. But it's easy
to understand the terms and especially their relationships in a visual language, since our brains
are good at understanding visual elements and line connections. Therefore, the domain
model is a visual dictionary of the noteworthy abstractions, domain vocabulary, and
information content of the domain.

9. What are the elements not suitable in a domain model?

The following elements are not suitable in a domain model

 Software artifacts, such as a window or a database, unless the domain being

modeled is of software concepts, such as a model of graphical user interfaces. 
 Responsibilities or methods 



10. What are Conceptual Classes?

The domain model illustrates conceptual classes or vocabulary in the domain. Informally, a
conceptual class is an idea, thing, or object. More formally, a conceptual class may be
considered in terms of its symbol, intension, and extension

 Symbol words or images representing a conceptual class. 

 Intension the definition of a conceptual class. 

 Extension the set of examples to which the conceptual class applies 



11. How to Create a Domain Model?

The current iteration requirements under design:

1. Find the conceptual classes (see a following guideline).

2. Draw them as classes in a UML class diagram.

3. Add associations and attributes.

12. How to Find Conceptual Classes?

1. Reuse or modify existing models. This is the first, best, and usually easiest approach,
and where I will start if I can. There are published, well-crafted domain models and
data models (which can be modified into domain models) for many common domains,
such as inventory, finance, health, and so forth. Example books that I'll turn to include
Analysis Patterns by Martin Fowler, Data Model Patterns by David Hay, and the Data
Model Resource Book (volumes 1 and 2) by Len Silverton.

2. Use a category list.

3. Identify noun phrases.

13. Mention some Conceptual Class Category.

 Conceptual Class Category Examples

 business transactions Sale, Payment

 Reservation

transaction line items

Sales Line Item

 product or service related to a transaction or Item

 transaction line item

 Flight, Seat, Meal

 where is the transaction recorded? Register, Ledger

 Flight Manifest

 roles of people or organizations related to the Cashier, Customer, Store Monopoly

 transaction; actors in the use case Player Passenger, Airline

 place of transaction; place of service Store

 Airport, Plane, Seat

 14. Define Association.

An association is a relationship between classes (more precisely, instances of those classes)
that indicates some meaningful and interesting connection.

15. Why Should We Avoid Adding Many Associations?

We need to avoid adding too many associations to a domain model. Digging back into our
discrete mathematics studies, you may recall that in a graph with n nodes, there can be
associations to other nodes a potentially very large number. A domain model with 20 classes
could have 190 associations’ lines! Many lines on the diagram will obscure it with "visual
noise." Therefore, be parsimonious about adding association lines. Use the criterion guidelines
suggested in this chapter, and focus on "need-to-remember" associations.

16. How to Name an Association in UML?

Name an association based on a Class Name-Verb Phrase-Class Name format where the verb
phrase creates a sequence that is readable and meaningful.

17. What is Aggregation? APRIL/MAY-2011

Aggregation is a vague kind of association in the UML that loosely suggests whole-part
relationships (as do many ordinary associations). It has no meaningful distinct semantics in
the UML versus a plain association, but the term is defined in the UML.

18. What is composition? APRIL/MAY-2011

Composition, also known as composite aggregation, is a strong kind of whole-part aggregation
and is useful to show in some models. A composition relationship implies that 1) an instance of
the part (such as a Square) belongs to only one composite instance (such as one Board) at a
time, 2) the part must always belong to a composite (no free-floating Fingers), and 3) the
composite is responsible for the creation and deletion of its parts either by itself
creating/deleting the parts, or by collaborating with other objects.

19. Mention the guidelines that suggest when to show aggregation.

 The lifetime of the part is bound within the lifetime of the composite there is a

create-delete dependency of the part on the whole. 
 There is an obvious whole-part physical or logical assembly. 

 Some properties of the composite propagate to the parts, such as the location. 


 Operations applied to the composite propagate to the parts, such as
destruction, movement, and recording. 



20. What is an activity diagram?

A UML activity diagram shows sequential and parallel activities in a process. They are useful
for modeling business processes, workflows, data flows, and complex algorithms. Basic UML
activity diagram notation illustrates an action, partition, fork, join, and object node. In essence,
this diagram shows a sequence of actions, some of which may be parallel. Most of the notation
is self-explanatory; two subtle points:

 once an action is finished, there is an automatic outgoing transition 

 the diagram can show both control flow and data flow 

UNIT-III

System Sequence Diagrams

PART- A

1. What is meant by System Sequence Diagrams? APRIL/MAY-2011

A system sequence diagram (SSD) is a picture that shows, for a particular scenario of a use
case, the events that external actors generate their order, and inter-system events. All systems
are treated as a black box; the emphasis of the diagram is events that cross the system boundary
from actors to systems.

2. What is meant by System Behavior?

System behavior is a description of what a system does, without explaining how it does it. One
Part of that description is a system sequence diagram. Other parts include the Use cases,
and system contracts(tobediscussedlater).

3. What is meant by Inter-System SSDs?

SSDs can also be used to illustrate collaborations between systems, such as between the Next
Gen POS and the external credit payment authorizer. However, this is deferred until a later
iteration in the case study, since this iteration does not include remote systems collaboration.
4. Define System Events and the System Boundary.

To identify system events, it is necessary to be clear on the choice of system boundary, as
discussed in the prior chapter on use cases. For the purposes of software development, the
system boundary is usually chosen to be the software system itself; in this context, a
system event is an external event that directly stimulates the software.

5. How to Naming System Events and Operations?

System events (and their associated system operations) should be expressed at the level of intent
rather than in terms of the physical input medium or interface widget level.

It also improves clarity to start the name of a system event with a verb Thus "enter item" is
better than "scan" (that is, laser scan) because it captures the intent of the operation while
remaining abstract and noncommittal with respect to design choices about what interface is used
to capture the system event.

6. What is meant by interaction diagram?

The term interaction diagram is a generalization of two more specialized UML diagram types;
both can be used to express similar message interactions:
. Collaboration diagrams

. Sequence diagrams
7. What is meant by link?
A link is a connection path between two objects; it indicates some form of navigation And
visibility between the objects is possible . More formally, a link is an instance of an
association. For example, there is a link or path of navigation from a Register to a Sale, along
which messages may flow, such as the make 2 Payment message.

8. What is meant by Messages?

Each message between objects is represented with a message expression and small arrow
indicating the direction of the message. Many messages may flow along this link. A
sequence number is added to show the sequential order of messages in the current thread of
control.

9. How to create an instance?

Any message can be used to create an instance, but there is a convention in the UML to use a
message named create for this purpose. If another (perhaps less obvious) message name is used,
the message may be annotated with a special feature called a UML stereotype, like so: «create».
The create message may include parameters, indicating the passing of initial values.
This indicates, for example, a constructor call with parameters in Java.

10. What is meant by Low Coupling?

Coupling is a measure of how strongly one element is connected to, has knowledge of, or
relies on other elements. An element with low (or weak) coupling is not dependent on too
many other elements; "too many" is context-dependent, but will be examined. These elements
include classes, subsystems, systems, and so on.

11. What is meant by High COHESION?

Cohesion (or more specifically, functional cohesion) is a measure of how strongly related and
focused the responsibilities of an element are. An element with highly related responsibilities,
and which does not do a tremendous amount of work, has high cohesion. These elements
include classes, subsystems, and so on.

12. Define Controller.

Assign the responsibility for receiving or handling a system event message to a
class representing one of the following choices:
- Represents the overall system, device, or subsystem (facade controller).
- Represents a use case scenario within which the system event occurs, often
named <UseCaseName>Handler, <UseCaseName>Coordinator, or <Use-
CaseName>Session (use-case or session controller).
- Use the same controller class for all system events in the same use case
scenario. -Informally, a session is an instance of a conversation with an actor.
-Sessions can be of any length, but are often organized in terms of use cases (use case sessions).

13. What is meant by CRC card?

CRC cards are index cards, one for each class, upon which the responsibilities of the class are
briefly written, and a list of collaborator objects to fulfill those responsibilities. They are
usually developed in a small group session. The GRASP patterns may be applied when
considering the design while using CRC cards.

14. What is meant by Pure Fabrication?

This is another GRASP pattern. A Pure Fabrication is an arbitrary creation of the designer, not a
software class whose name is inspired by the Domain Model. A use-case controller is a kind of
Pure Fabrication.

15. List the relationships used in class diagram? APRIL/MAY-2011

Generalization(class to class)
Association (object to object) Aggregation(objecttoobject)
Composition (object to object)

Unit-IV

GRASP

PART- A

1. How to Choosing the Initial Domain Object?

Choose as an initial domain object a class at or near the root of the containment or
aggregation hierarchy of domain objects. This may be a facade controller, such as Register, or
some other object considered to contain all or most other objects, such as a Store.

2. How to Connecting the UI Layer to the Domain Layer?

• An initializing routine (for example, a Java main method) creates both a UI and a
domain object, and passes the domain object to the UI.
• A UI object retrieves the domain object from a well-known source, such as a factory object
that is responsible for creating domain objects.

3. Mention the Interface and Domain Layer Responsibilities.

The UI layer should not have any domain logic responsibilities. It should only be responsible
for user interface tasks, such as updating widgets. The UI layer should forward requests for all
domain-oriented tasks on to the domain layer, which is responsible for handling them.

5. Define patterns.

A pattern is a named problem/solution pair that can be applied in new context, with advice
on how to apply it in novel situations and discussion of its trade-offs.

6. How to Apply the GRASP Patterns?

The following sections present the first five GRASP patterns:

. Information Expert

. Creator

. High Cohesion

. Low Coupling

. Controller

7. Define Responsibilities and Methods.

The UML defines a responsibility as "a contract or obligation of a classifier" [OMG01].
Responsibilities are related to the obligations of an object in terms of its behavior.
Basically, these responsibilities are of the following two types:

Doing responsibilities of an object include:

- doing something itself, such as creating an object or doing a calculation

- initiating action in other objects
-controlling and coordinating activities in other
objects Knowing responsibilities of an object include:
- knowing about private encapsulated data

- knowing about related objects

- knowing about things it can derive or calculate

8. Who is creator?
Solution Assign class B the responsibility to create an instance of class A if one or more

of the following is true:
. B aggregates an object.

. B contains an object.

. B records instances of objects.

. B closely uses objects.

. B has the initializing data that will be passed to A when it is created (thus B is an Expert
with respect to creating A).
B is a creator of an object.

If more than one option applies, prefer a class B which aggregates or contains class A.

9. List out some scenarios that illustrate varying degrees of functional cohesion.

-Very low
cohesion -low
cohesion -High
cohesion -
Moderate cohesion

10. Define Modular Design.
Coupling and cohesion are old principles in software design; designing with objects does
not imply ignoring well-established fundamentals. Another of these. Which is strongly
related to coupling and cohesion? is to promote modular design.

11. What are the advantages of Factory objects?

• Separate the responsibility of complex creation into cohesive helper objects.

• Hide potentially complex creation logic.
• Allow introduction of performance-enhancing memory management strategies, such as
object caching or recycling.

12. Designing for Non-Functional or Quality Requirements.

Interestingly—and this a key point in software architecture—it is common that the large-scale
themes, patterns, and structures of the software architecture are shaped by the designs to
resolve the non-functional or quality requirements, rather than the basic business logic.
13. Abstract for Factory (GoF) for Families of Related Objects.

The Java POS implementations will be purchased from
manufacturers. For example5:
// IBM's drivers
com.ibm.pos.jpos.CashDrawer (implements jpos.CashDrawer)
com.ibm.pos.jpos.CoinDispenser (implements
jpos.CoinDispenser) // NCR's drivers
com.ncr.posdrivers.CashDrawer (implements
jpos.CashDrawer) com.ncr.posdrivers.CoinDispenser
(implements jpos.CoinDispenser)

14. What is meant by Abstract Class Abstract Factory?

A common variation on Abstract Factory is to create an abstract class factory that is accessed
using the Singleton pattern, reads from a system property to decide which of its subclass
factories to create, and then returns the appropriate subclass instance. This is used, for example,
in the Java libraries with the java.awt.Toolkit class, which is an abstract class abstract factory
for creating families of GUI widgets for different operating system and GUI subsystems.

15. What is meant by Fine-Grained Classes?

Consider the creation of the Credit Card, Drivers License, and Check software objects. Our first
impulse might be to record the data they hold simply in their related payment classes, and
eliminate such fine-grained classes. However, it is usually a more profitable strategy to use
them; they often end up providing useful behavior and being reusable. For example, the Credit
Card is a natural Expert on telling you its credit company type (Visa, MasterCard, and so on).
This behavior will turn out to be necessary for our application.

16. Define coupling. APIRAL/MAY-2011
The degree to which components depend on one another. There are two types of coupling,
"tight" and "loose". Loose coupling is desirable for good software engineering but tight
coupling may be necessary for maximum performance. Coupling is increased when the data
exchanged between components becomes larger or more complex.

Unit-V

UML state diagrams and modeling

PART- A

1. Define post condition.

The post conditions describe changes in the state of objects in the Domain Model. Domain
Model state changes include instances created, associations formed or broken, and
attributes changed.

2. Define Attributes.
An attribute is a logical data value of an object.
3. When Are Contracts Useful?

The use cases are the main repository of requirements for the project. They may provide most or
all of the detail necessary to know what to do in the design, in which case, contracts are not
helpful. However, there are situations where the details and complexity of required state
changes are awkward to capture in use cases.

4. Mention the Guidelines for Contracts.

To make contracts:

1. Identify system operations from the SSDs.

2. For system operations that are complex and perhaps subtle in their results, or which are not

clear in the use case, construct a contract.

3. To describe the post conditions, use the following categories:

- Instance creation and deletion

- attribute modification

- Associations formed and broken

5. What are Steps for Mapping Designs to Code?

Implementation in an object-oriented programming language requires writing source code

for:

• Class and interface definitions

• Method definitions

6. Creating Class Definitions from DCDs.

At the very least, DCDs depict the class or interface name, super classes, method signatures,
and simple attributes of a class. This is sufficient to create a basic class definition in an object-
oriented programming language. Later discussion will explore the addition of interface and
namespace (or package) information, among other details.

7. What are the Benefits of Iterative Development?

• Early rather than late mitigation of high risks (technical, requirements, objectives, usability,
and so forth)
• Early visible progress
• Early feedback, user engagement, and adaptation, leading to a refined system that more
closely meets the real needs of the stakeholders
• managed complexity; the team is not overwhelmed by "analysis paralysis" or very long and
complex steps
• The learning within iteration can be methodically used to improve the development process
itself, iteration by iteration

8. Define Events, States, and Transitions. APRIL/MAY-2011

An event is a significant or noteworthy occurrence.
For example:
A telephone receiver is taken off the hook.
A state is the condition of an object at a moment in time—the time between events.
For example:

• A telephone is in the state of being "idle" after the receiver is placed on the hook and until it
Is taken off the hook.
A transition is a relationship between two states that indicates that when an event occurs, the
Object moves from the prior state to the subsequent state.
For example:

• When the event "off hook" occurs, transition the telephone from the "idle" to "active" state.

9. What is meant by State chart Diagrams?

A UML state chart diagram, illustrates the interesting events and states of an object, and the
behavior of an object in reaction to an event. Transitions are shown as arrows, labeled with their
event. States are shown in rounded rectangles. It is common to include an initial pseudo-state,
which automatically transitions to another state when the instance is created.

10. State chart Diagrams in the UP?

There is not one model in the UP called the "state model." Rather, any element in any model
(Design Model, Domain Model, and so forth) may have a state chart to better understand or
communicate its dynamic behavior in response to events. For example, a state chart associated
with the Sale design class of the Design Model is itself part of the Design Model.

11. Utility of Use Case State chart Diagrams.

- Hard-coded conditional tests for out-of-order events

- Use of the State pattern (discussed in a subsequent chapter)

- disabling widgets in active windows to disallow illegal events (a desirable approach)

- A state machine interpreter that runs a state table representing a use case

State chart diagram.

12. List out the types of Events.

-External event -
Internal event -
Temporal event

13. Define External event.

External event—also known as a system event, is caused by something (for example, an actor)
outside our system boundary. SSDs illustrate external events. Noteworthy external events
precipitate the invocation of system operations to respond to them.

- When a cashier presses the "enter item" button on a POS terminal, an external event has
occurred.

14. Define internal event.

Internal event—caused by something inside our system boundary. In terms of software, an
internal event arises when a method is invoked via a message or signal that was sent from
another internal object. Messages in interaction diagrams suggest internal events.

- When a Sale receives a make Line item message, an internal event has occurred.

15. Define temporal event.

Temporal event—caused by the occurrence of a specific date and time or passage of time. In
terms of software, a temporal event is driven by a real time or simulated-time clock.

-Suppose that after an end Sale operation occurs, a make Payment operation must occur within
five minutes, otherwise the current sale is automatically purged.

